Get amount of items used for feeding livestock.
Arguments
- version
File version to use as input. See whep_inputs for details.
Value
A tibble with the feed intake data. It contains the following columns:
year
: The year in which the recorded event occurred.area_code
: The code of the country where the data is from. For code details see e.g.add_area_name()
.live_anim_code
: Commodity balance sheet code for the type of livestock that is fed. For code details see e.g.add_item_cbs_name()
.item_cbs_code
: The code of the item that is used for feeding the animal. For code details see e.g.add_item_cbs_name()
.feed_type
: The type of item that is being fed. It can be one of:animals
: Livestock product, e.g.Bovine Meat
,Butter, Ghee
, etc.crops
: Crop product, e.g.Vegetables, Other
,Oats
, etc.residues
: Crop residue, e.g.Straw
,Fodder legumes
, etc.grass
: Grass, e.g.Grassland
,Temporary grassland
, etc.scavenging
: Other residues. SingleScavenging
item.
supply
: The computed amount in tonnes of this item that should be fed to this animal, when sharing the total itemfeed
use from the Commodity Balance Sheet among all livestock.intake
: The actual amount in tonnes that the animal needs, which can be less than the theoretical used amount fromsupply
.intake_dry_matter
: The amount specified byintake
but only considering dry matter, so it should be less thanintake
.loss
: The amount that is not used for feed. This issupply - intake
.loss_share
: The percent that is lost. This isloss / supply
.
Examples
# Note: These are smaller samples to show outputs, not the real data.
# For all data, call the function with default version (i.e. no arguments).
get_feed_intake(version = "20250721T143825Z-c1313")
#> ℹ Fetching files for feed_intake...
#> # A tibble: 10,000 × 10
#> year area_code live_anim_code item_cbs_code feed_type supply intake
#> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 1983 15 1096 2102 crops 21.1 18.9
#> 2 1985 251 1016 3000 grass 269616. 269616.
#> 3 2021 222 1052 2781 animals 35.9 32.3
#> 4 2017 105 1079 2598 crops 1727. 1554.
#> 5 2000 39 1053 2106 residues 12662. 11396.
#> 6 1968 84 1016 2002 residues 3015. 2714.
#> 7 2008 170 1053 2595 crops 4294. 3864.
#> 8 2015 3 976 2101 crops 40.1 36.1
#> 9 2002 79 1052 2558 crops 3788. 3409.
#> 10 2014 41 1068 2518 crops 148505. 133654.
#> # ℹ 9,990 more rows
#> # ℹ 3 more variables: intake_dry_matter <dbl>, loss <dbl>, loss_share <dbl>