Get amount of crops, livestock and livestock products.
Arguments
- version
File version to use as input. See whep_inputs for details.
Value
A tibble with the item production data. It contains the following columns:
year
: The year in which the recorded event occurred.area_code
: The code of the country where the data is from. For code details see e.g.add_area_name()
.item_prod_code
: FAOSTAT internal code for each produced item.item_cbs_code
: FAOSTAT internal code for each commodity balance sheet item. The commodity balance sheet contains an aggregated version of production items. This field is the code for the corresponding aggregated item.live_anim_code
: Commodity balance sheet code for the type of livestock that produces the livestock product. It can be:NA
: The entry is not a livestock product.Non-
NA
: The code for the livestock type. The name can also be retrieved by usingadd_item_cbs_name()
.
unit
: Measurement unit for the data. Here, keep in mind three groups of items: crops (e.g.Apples and products
,Beans
...), livestock (e.g.Cattle, dairy
,Goats
...) and livestock products (e.g.Poultry Meat
,Offals, Edible
...). Then the unit can be one of:tonnes
: Available for crops and livestock products.ha
: Hectares, available for crops.t_ha
: Tonnes per hectare, available for crops.heads
: Number of animals, available for livestock.LU
: Standard Livestock Unit measure, available for livestock.t_head
: tonnes per head, available for livestock products.t_LU
: tonnes per Livestock Unit, available for livestock products.
value
: The amount of item produced, measured inunit
.
Examples
# Note: These are smaller samples to show outputs, not the real data.
# For all data, call the function with default version (i.e. no arguments).
get_primary_production(version = "20250721T145805Z-8e12a")
#> ℹ Fetching files for primary_prod...
#> # A tibble: 10,000 × 7
#> year area_code item_prod_code item_cbs_code live_anim_code unit value
#> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 1965 38 720 2645 NA tonnes 4460
#> 2 2019 213 1062 2744 1052 t_LU 581.
#> 3 1999 39 826 2671 NA t_ha 1.45
#> 4 1968 114 772 772 NA t_ha 1
#> 5 2001 236 406 2605 NA ha 1591
#> 6 1984 50 603 2625 NA tonnes 45
#> 7 1981 136 567 2605 NA ha 720
#> 8 2005 40 547 2625 NA ha 4532
#> 9 2009 215 977 2732 976 t_LU 0.0321
#> 10 1996 158 191 2549 NA ha 270
#> # ℹ 9,990 more rows